地震応答解析結果の深層学習による建物損傷推定の精度分析 株式会社竹中工務店 青井 淳 恒川 裕史 吉澤 睦博 上林 厚志 電気通信大学 ガンバト ニャムフー 橋山 智訓

1. はじめに

大地震時、防災拠点としての機能が期待される建築物では地震後の速やかな建物継続使用判断が 求められる。東日本大震災においては帰宅困難者が問題となったが、建物側は帰宅困難者の受け入 れのため、地震直後に迅速な施設の安全確認が必要となる。その対策の一つとして、地震後に建物の 健全性判断を行う構造ヘルスモニタリングシステムのニーズが近年高まっている。現在実装の進んでい る一般的なシステムでは、建物内に複数設置された加速度センサから得られる情報を用いて加速度積 分やモード応答より建物変形を求め、最大層間変形角から建物各階の損傷度を推定するものが主流で ある^{1),2)}。一方、ディープラーニングの登場以降、人工知能技術への注目が高まっており、構造ヘルス モニタリングへの機械学習手法の応用に関する研究も行われつつある^{3),4)}。

機械学習手法の内、既知である入力データと出力データのペアを正解としてその関係を学習させる ことを教師あり学習、その入出力データセットのことを教師データと呼ぶ。筆者らは、地震時の建物応答 加速度と建物損傷度の関係を事前に教師あり学習させることで、建物に設置された加速度センサから 得られる加速度データから建物損傷度を即時に直接推定出来ないかと考え、複数回の地震応答解析 から得られる解析結果を教師データとした機械学習モデルによる建物損傷推定手法の検討を行ってい る⁵⁾。本論文では、機械学習モデルによる建物損傷推定の精度と地震応答解析の入力地震動の周期 特性との関係性について分析した結果について報告する。

2. 機械学習を用いた損傷推定手法の概要

ある入力地震動1波に対して、建物全層の損傷有無の判定を行う機械学習モデルを構築する。具体的には、想定する建物の3次元モデルを対象に複数回の地震応答解析を行い、その解析結果から得られる建物各層の応答加速度のフーリエ振幅スペクトルを入力、各層の部材の塑性化の有無から決定した層の損傷判定結果を出力とした入出力関係をニューラルネットワーク(Neural Network、以下NN)のモデルにより学習を行う。これにより、地震時に建物各層での加速度記録が取得できれば、即時に建物各層での損傷判定結果を得ることが可能となる。上記手順による本手法の概要を図1に示す。

図1 機械学習手法を用いた損傷推定手法の概要

3. 地震応答解析による教師データの作成

3.1 地震応答解析の概要

検討用の建物モデルとして、既往の研究⁶にて実施された鉄骨造 18 層建物の実大振動実験における試験体を参考とし、地震応答解析用の3次元建物モデルを作成した。表1に建物モデルの諸元およ

び固有値解析結果を、図2にモデル形状を示す。既往の実 大振動実験と同様に、地震応答解析は図2に示すX方向 の一方向入力とした。

地震応答解析に用いる入力地震動は、1995~2016年の 間に震度5強以上を観測した主要な地震記録456波(水平 2 方向ベクトル和最大方向)とした。地震動の振幅レベルを 最大速度115cm/sでスケーリングしたものを100%とし、5%~ 100%まで5%刻みで振幅レベルを変動させた加速度記録を 入力地震動として用いた。振幅レベル100%における456波 の速度応答スペクトルを図3に示す。なお、試験体の縮尺が 1/3であるため、地震動の時間軸は1/√3に縮めている。

1波あたり20ケースのため、合計456波×20の合計9,120 ケースの地震応答解析を実施し、解析結果から得られる各 FL の応答加速度をフーリエ変換して得られるフーリエ振幅 スペクトル(バンド幅 0.1Hz の Parzen window で平滑化)を機 械学習時の入力データとして用いることとした。建物の 1~3 次固有周期を含むように 0.5Hz~5.2Hz の帯域を対象とし、 周波数刻みは0.00264Hzとしたため、1FL あたりのデータサ イズは 1792 となり、1FL~RFL までの全階分で 19FL×1792 のフーリエ振幅値マトリクスが入力データとなる。出力データ については、層ごとの損傷有無の判定結果とした。層の損 傷判定は、各層の柱および上下階の FL 上の梁のいずれか の部材において解析終了時点で一か所でも塑性化があれ ば当該層において損傷有りと見なすこととした。図 4 に、 9,120 ケースの地震応答解析結果における各層の損傷有無 の判定結果の内訳を示す。全体的に損傷有りに比べて損 傷無しの数が多く、上層ほど損傷有りのケースが少ない傾 向にある。

3.2 損傷分布パターンの分析

学習データの傾向を把握するため、1~18 層での損傷有 無の分布 9,120 ケースに対し、K-means 法を用いて 4 クラス にクラスタリングし、対応する入力地震動のフーリエ振幅スペ クトルと併記したものを図 5 に示す。横軸の Damage = 1 が 損傷無し、2 が損傷有りに対応しており、クラスターごとに各 層の Damage の平均値と±σ の値をプロットしている。4 つ のクラスは左から①全層ほぼ損傷無し、②下から半分以上 の層で損傷有り、③低層部のみ損傷有り、④低層部と間を 空けて上層部に損傷有りに分類された。①のパターンは

表1 建物モデルの諸元および固有値解析結果

	Specification						
Structure	18 story s	steel frame s	tructure				
Gross weight		4,179 kN					
height		24.65m					
Plan Size		5.0m×6.0m					
scale		1/3					
mode order	Period	Effective					
(X-direction)	(s)	mass ratio					
1	1.14	0.770					
2	0.37	0.138					
3	0.20 0.038						

図23次元解析モデル図

(最大速度 115 cm/s で基準化)

5,503 ケースで半数以上を占めており、対応する入力地震動のフーリエスペクトルは全体的に振幅レベルが小さく、周期のピークも建物の1次固有周期(1.14秒)、2次固有周期(0.37秒)を外れたところにあるものが多かった。②のパターンは、1次固有周期付近でフーリエ振幅が大きくなっている傾向にあり、主に1次モードの応答が大きくなり、損傷範囲が広がったパターンだと言える。③については、①と同様に建物の1、2次固有周期付近のフーリエ振幅値は小さく、2次固有周期以下の極短周期にピークがあるケースが多かったが、全体的に振幅レベルは①と比べて大きかったために低層でのみ損傷が発生したパターンだと見てとれる。最後の④は、353ケースと数は少ないが、2次固有周期付近にピークを持つ入力地震動が多く、2次モードの揺れが支配的となり、低層部と上層部で間を空けた形で損傷が発生するパターンだとわかる。①~④のパターンでケース数に偏りが存在しているが、これらのパターンの特徴を捉えて学習できているかを学習後に確認する必要がある。

図5 K-means 法で分類した各クラスターの損傷パターンとフーリエ振幅スペクトル

4. 機械学習モデルの構築

19×1792 のサイズの入 カデータに対して、18 層の 各層の損傷有無の判定結 果を同時に返す NN の学習 モデルを構築する。NN モデ ルは既往の深層学習モデ ルを参考に表 2 の 3 種類と し、モデルによって予測精 度の傾向に差異が生まれる か比較検証する。(a)MLP は 全結合層のみの NN、(b)と (c)は Convolutional Neural Network(以下 CNN)の代表 的なモデルである LeNet と

表2 学習モナルの概要									
NNモデル (a) MLP				(b) LeNet	(c) VGG				
batch size	512			512	512				
epoch		30		30		120			
learnig rate		0.005		0.01		0.005			
momentum		0.9		0.9	0.85				
wd		0.00001		0.00001		0.00001			
Input Data Size		19×1792		19×1792		19×1792			
	Block	Layers	Block	Layers	Block	Layers			
	FC1	FullyConnected 128ch Relu	Conv1	Convolution 5×5, 20ch Tanh	Conv1	Convolution 3×3, 64ch Relu			
	FC2	FullyConnected 64ch		MaxPooling 2×2	contri	MaxPooling 2x2			
		Relu		Convolution 5×5, 50ch		Convolution 3×3, 128ch			
	Output	FullyConnected 36ch	Conv2	Tanh	Conv2	Relu			
		Softmax		MaxPooling 2×2		MaxPooling 2×2			
				Flatten		Convolution 3×3, 256ch			
			FC1	FullyConnected 500ch		Relu			
				Tanh	Conv3	Convolution 3×3, 256ch			
モデル構造			Output	FullyConnected 36ch		Relu			
			output	Softmax		MaxPooling 2×2			
						Flatten			
					FC1	FullyConnected 1024ch			
						Relu			
						Dropout 0.5			
					ECO	FullyConnected 1024ch			
					FC2	Kelu Dranaut 0.5			
						FullyConnected 36ch			
					Output	Softmax			

VGG を参考に設定した。出力は 18 層×損傷有無の 2 パターンで 36ch としており、最後の softmax 関数で出力の合計は 1 となるため、層ごとに損傷有無に応じてどちらかの ch に 1/18 の値を対応させる形 にしており、1 つのモデルで各層の判定結果を同時に返す学習モデルとなる。

ᆂᅌᇏᆇᆂᆡᇰ

5. 機械学習モデルの予測精度検証

5.1 各モデルの精度検証

精度検証は、学習データ9,120ケースを訓練データ・テストデータに振り分けて実施する。全体は456 波×20 ケースのデータであり、各地震波の 20 ケースは振幅レベルのみが異なる類似のデータであるた め、地震波単位で訓練データ・テストデータに振り分け、未知の地震波に対するテストとなるように設定 する。訓練データ・テストデータそれぞれの割合が 0.85:0.15 程度となるように、テストデータの波をラン ダムに抽出し、地震波単位で 388 波:68 波に振り分けた。3 つの学習済みモデルを用いて、テストデー タ 1,360 ケースに対し各層の損傷有無の判定を行い、解析結果による正解値との正誤関係をまとめた 混同行列および Accuracy、Recall、Precision の評価指標の値を表 3 に示す。

Accuracy を見ると、3 モデルとも各層で 0.8 以上の良い値を示しており精度良く予測できているが、 「損傷有り」については上層において Recall、Precision の値が低下している。これは、図5にて示した通 り、上層階は「損傷有り」のデータが「損傷無し」のデータに比べて非常に少ないために十分に学習でき ていなかったことが原因だと考えられる。3つのモデルの予測精度を比較すると、Accuracyで見ると差異 はほとんど無いように見えるが、RecallとPrecisionの値を比較すると、MLPとVGGは全体的に「損傷有 り」の Recall が高く、Precision が低めとなっており、LeNet の方は逆に「損傷有り」の Recall が低く、 Precision が高めの傾向を示している。この傾向は、MLP と VGG は全体的に損傷を過大評価(安全側 の判定)、LeNet では逆に損傷を過小評価(危険側の判定)する傾向であることを示している。実際の地 震時の運用を想定すると、出来るだけ予測精度は確保しつつも安全側寄りの評価となっていることが望

ましい。同じ CNN の LeNet と VGGとでは逆の評価傾向を示し ており、Recall や Precision、混 同行列などを確認し、判定の全 体的な傾向を把握しておくこと が重要だと考えられる。

更に、テストデータの全 1,360 ケースでの解析結果による損傷 分布(正解値)と3モデルの予測 による損傷分布をグリッド化して 並べたものを図 6 に、正解値と 各モデルの結果の差分に色を 付けたものを図 7 に示す。テスト データ 68 地震波の 5~100%の 20レベルごとに各階の損傷有無 または差分の有無に応じて色を 付け、全ケース横に並べてい る。図5にて損傷パターンを4つ に分類したが、ケース数の少な い④(2 次モードの影響大)の低 層と上層で間を空けて損傷する パターンも含めて各モデルで表 現できていることがわかる。図7 は、赤の場合は正解が損傷有

表 3	混同行列(赤字は Accuracy)
-----	--------------------

	A 3 定向行列(亦于La Accuracy)													
(a) MLP				(b) LeNet				(c) VGG						
層	予測値 正解値	損傷無し	損傷有り	Recall	層	予測値 正解値	損傷無し	損傷有り	Recall	層	予測値 正解値	損傷無し	損傷有り	Recall
	損傷無し	1360	0	1.000		損傷無し	1360	0	1.000		損傷無し	1360	0	1.000
18	損傷有り	0	0	-	18	損傷有り	0	0	-	18	損傷有り	0	0	-
	Precision	1.000	-	1.000		Precision	1.000	-	1.000		Precision	1.000	-	1.000
	損傷無し	1358	0	1.000		損傷無し	1358	0	1.000		損傷無し	1358	0	1.000
17	損傷有り	2	0	0.000	17	損傷有り	2	0	0.000	17	損傷有り	2	0	0.000
	Precision	0.999	-	0.999		Precision	0.999	-	0.999		Precision	0.999	-	0.999
1.0	損傷無し	1278	1	0.999	10	損傷無し	1268	11	0.991	10	損傷無し	1256	23	0.982
10	<u></u> して して して して して して して して して して	0.045	0.075	0.080	10	<u> </u> 」 団 「 同 「 句 「 り 」 の 一 の 一 の 一 の 一 の 一 の 一 の 一 の 一 の 一 の 一 の 一 の 一 の 一 の つ の 一 の の の の の の の の の の の の の	0.042	0.967	0.049	10	1.1) Draginian	0.052	0 561	0.222
-	Frecision 埍仾毎I	0.845	151	0.840	_	Frecision 指復毎1	1100	0.207	0.835	_	Frecision 埍仾毎I	1046	0.301	0.801
15	損傷点し	47	171	0.000	15	損傷点し	124	94	0.431	15	損傷点し	85	13	0.331
	Precision	0 955	0 5 3 1	0.854	10	Precision	0 899	0 740	0 885	10	Precision	0 925	0 591	0.918
	損傷無し	911	144	0.864		損傷無し	1008	4	0.996		損傷無し	938	117	0.889
14	損傷有り	49	256	0.839	14	損傷有り	121	18	0.129	14	損傷有り	93	212	0.695
	Precision	0.949	0.640	0.858		Precision	0.893	0.818	0.891		Precision	0.910	0.644	0.846
	損傷無し	880	126	0.875		損傷無し	965	41	0.959		損傷無し	891	115	0.886
13	損傷有り	57	297	0.839	13	損傷有り	125	229	0.647	13	損傷有り	91	263	0.743
	Precision	0.939	0.702	0.865		Precision	0.885	0.848	0.878		Precision	0.907	0.696	0.849
	損傷無し	857	122	0.875		損傷無し	935	44	0.955		損傷無し	854	125	0.872
12	損傷有り	46	335	0.879	12	損傷有り	125	256	0.672	12	損傷有り	63	318	0.835
_	Precision	0.949	0.733	0.876		Precision	0.882	0.853	0.876	_	Precision	0.931	0.718	0.862
	損傷無し	850	110	0.885		損傷無し	915	45	0.953		損傷無し	842	118	0.877
11	<u> 現傷有り</u>	50	350	0.875	11	<u> 現傷有り</u>	114	286	0.715	11	<u> 現傷有り</u>	44	356	0.890
-	Precision	0.944	0./01	0.882		Precision	0.889	0.804	0.883	_	Precision	0.950	0.751	0.881
10	損腐無し	049	262	0.003	10	損腐悪し	915	202	0.952	10	損腐悪し	20	270	0.870
10	現 ll 同 句 り Precision	0.958	0 764	0.807	10	現 ll 初 句 り Precision	0 905	0 868	0.759	10	現 ll 同 句 り Precision	0 977	0 752	0.800
	損傷無1.	860	116	0.881		指傷無1.	931	45	0.954		指傷無1.	846	130	0.867
9	損傷有り	29	355	0.924	9	損傷有り	82	302	0.786	9	損傷有り	12	372	0.969
	Precision	0.967	0.754	0.893		Precision	0.919	0.870	0.907		Precision	0.986	0.741	0.896
	損傷無し	867	136	0.864		損傷無し	943	60	0.940		損傷無し	855	148	0.852
8	損傷有り	27	330	0.924	8	損傷有り	81	276	0.773	8	損傷有り	15	342	0.958
	Precision	0.970	0.708	0.880		Precision	0.921	0.821	0.896		Precision	0.983	0.698	0.880
	損傷無し	852	131	0.867		損傷無し	923	60	0.939		損傷無し	841	142	0.856
7	損傷有り	29	348	0.923	7	損傷有り	86	291	0.772	7	損傷有り	13	364	0.966
_	Precision - 是/后 一 ·	0.967	0.727	0.882	-	Precision	0.915	0.829	0.893		Precision	0.985	0.719	0.886
6	損傷悪し	828	120	0.8/3	6	損傷悪し	894	210	0.943	6	損傷悪し	810	138	0.854
0	<u> </u> 復徳有り Precision	0 955	0757	0.905	0	<u> </u> 」 団 で の に ion	0 006	0 955	0.774	0	<u> </u> 復徳有り Precision	0.076	0 740	0.951
	指傷無I	785	107	0.880		指傷無I	843	0.000	0.082		指傷無I	756	136	0.849
5	損傷有り	59	409	0.874	5	損傷有り	113	355	0.759	5	損傷有り	30	438	0.040
Ĭ	Precision	0.930	0.793	0.878	Ŭ	Precision	0.882	0.879	0.881	Ŭ	Precision	0.962	0.763	0.875
	損傷無し	727	104	0.875		損傷無し	781	50	0.940		損傷無し	703	128	0.846
4	損傷有り	48	481	0.909	4	損傷有り	118	411	0.777	4	損傷有り	30	499	0.943
	Precision	0.938	0.822	0.888		Precision	0.869	0.892	0.876		Precision	0.959	0.796	0.884
	損傷無し	699	94	0.881		損傷無し	743	50	0.937		損傷無し	672	121	0.847
3	損傷有り	56	511	0.901	3	損傷有り	119	448	0.790	3	損傷有り	40	527	0.929
	Precision	0.926	0.845	0.890		Precision	0.862	0.900	0.876		Precision	0.944	0.813	0.882
	損傷無し	668	82	0.891	_	損傷無し	702	48	0.936		損傷無し	632	118	0.843
2	損傷有り	52	558	0.915	2	損傷有り	102	508	0.833	2	損傷有り	37	573	0.939
_	Precision	0.928	0.872	0.901	-	Precision	0.873	0.914	0.890		Precision	0.945	0.829	0.886
1	損協悪し	0/1	81	0.892	1	損傷悪し	/04	48	0.936		損湯悪し	035	570	0.844
'	<u>現満有り</u> Precision	49	0.872	0.919	l '	<u>現満有り</u> Precision	0.877	0.014	0.837	'	<u>現満有り</u> Precision	0040	0.890	0.94
	11001310[]	0.002	0.073	0.004		1100131011	0.077	0.014	0.082		11001310[]	0.040	0.030	0.000

り、予測が損傷無しの過小評価となっている箇所で、青がその逆で損傷を過大評価している箇所を表し ている。3 つのモデルを比較するとやはり LeNet が他の 2 モデルと比較して全体的に赤い箇所が多め (過小評価傾向)で、MLP と VGG は青が多め(過大評価傾向)となっている。ただし、赤もしくは青が多 いといった地震波ごとの傾向については3つのモデルで概ね共通しており、過小 or 過大評価の傾向に ついては地震波にも大きく依存していることがわかる。なお、16~18 階辺りについては損傷有りの評価 精度がそもそも低く、青が多いケースでも頂部だけ赤くなっている。

5.2 予測精度と地震動特性との関係性分析

ここで、図 7 の傾向を踏まえ、学習モデルの予測が合いやすい地震波(グレーが多い)、損傷を過小 評価傾向の地震波(赤が多い)と過大評価傾向の地震波(青が多い)それぞれについて、地震波のフー リエ振幅スペクトルに一定の特徴が見られるかについて分析する。地震波ごとに 18 層×20 レベルの計 360 点のグリッドがあるが、3 つのモデルで共通して、(a)赤 or 青が 10 点以下、(b)赤が 30 点以上、(c)青 が30点以上となる3つの条件に該当する地震波を抽出して、フーリエ振幅スペクトル(振幅レベル100%) を図示したものを図8に示す。また、図5で示した損傷パターン①~④それぞれのケース数を(a)~(c)ご

とにカウントした結果を 表4に示す。(a)のフーリ エ振幅スペクトルは 0.2 秒程度の極短周期のみ が卓越した地震波とな っており、損傷パターン ①のほぼ損傷無しのケ ースが全体を占めてい た。極短周期のフーリエ 振幅の値は大きな値を 示しているが、建物応 答への影響は小さいこ とを学習できており、損 傷無しのケースをうまく 予測できていることがわ かる。(b)は、建物の1次 と2 次の固有周期付近 にピークがあり、それ以 外の周期帯のフーリエ

2000

Fourier Amplitude(cm/s) 500 1000 1500

0

0.0

0.5

7wave

図8 正解-予測の差分の傾向ごとに分類したフーリエ振幅スペクトル

振幅値が低めの傾向が見られ、損傷パターンは②と④ が比較的数が多い。恐らく、学習モデル上では固有周 期付近以外のフーリエ振幅値の影響度も考慮している ため、その値が小さいために過小評価傾向が出てしま ったのではと思われる。(c)は逆に1次固有周期~2次

表 4	各地震波分類における損傷パターンごと	のケース数
-----	--------------------	-------

八祐	損傷パターン								
刀與	1	2	3	4	計				
テストデータ全体	787	364	149	60	1360				
(a)	139	0	0	1	140				
(b)	42	35	11	12	100				
(c)	72	52	13	3	140				

固有周期間の幅広い周期帯で大きなフーリエ振幅値を持った地震波が多く、固有周期付近以外のフ ーリエ振幅値の影響で過大評価傾向になってしまったものと考えられる。

以上の分析より、予測精度と地震動の周期特性との間には一定の相関性が見られた。予測精度が低下する要因としては、建物損傷(建物応答)に影響する周期帯が本検討で用いた学習データセットでは学習しきれていなかったことが考えられる。地震動の時間軸は 1/√3 でスケーリングしているため、実際の地震動の直すと1 次固有周期 1.14 秒に対応するのは 1.97 秒であり、そこにだけピークを持つような地震動の数が少なかったことが原因の一つとして考えられる。本検討では実際の観測記録を基に入力地震動を設定したために周期特性に偏りがあり、その偏りが予測精度に影響したものと思われるが、この点については建物の振動特性を踏まえて設定した模擬地震動を学習データに追加する等により解消できると思われる。以上の検討より、建物損傷推定において機械学習を適用する場合においても、建物および地震動の振動特性を把握した上で活用していくことが重要だと考えられる。

6. まとめ

地震時の建物損傷推定における機械学習手法の有効性を検証するため、3 種類の NN モデルによ る学習および精度検証を行い、層レベルの損傷有無の判定については一定の精度で予測可能である ことがわかった。一方で、層ごとの損傷有無のケース数の偏りや、学習に用いる入力地震動の周期特性 の偏り等が予測精度に影響を与えることがわかった。本論では層レベルを対象としたが、機械学習の場 合、特定の部材を対象とした損傷判定等も期待される。構造ヘルスモニタリングへの機械学習手法の応 用に関して今後さらなる検証を進め、地震時により有益な情報提供を可能とするシステム構築が今後の 課題である。なお、本論の検討内容はあくまで解析結果のみに基づいたものであり、実観測データを対 象とした場合にも同様の傾向を示すかについては、今後更なる検証が必要である。

【参考文献】

- 1) 三田彰:建物モニタリングと地震災害レジリエンス,2021 年度日本建築学会大会(東海)構造部門(振動)パネルディスカッション資料, pp. 25-29,2021.
- 2) 楠浩一:建築物の構造ヘルスモニタリング,コンクリート工学, Vol. 58, No. 9, pp. 761-766, 2020.
- 深沢剛司,藤田聡,饗庭天暉:深層学習を活用した構造ヘルスモニタリングシステムの検討,日本機械学会論文集, Vol. 88, No. 910, pp. 22-00006, 2022.
- 4) 森田高市,長谷川隆:実大3層鉄骨フレームの振動台実験データに基づく機械学習による鉄骨端部の損傷状況の 推定,日本建築学会技術報告集, Vol. 28, No. 70, pp. 1137-1141, 2022.
- 5) ガンバトニャムフー,青井淳,橋山智訓,恒川裕史,吉澤睦博:ディープラーニングを用いた建物地震損傷推定法の精度分析,日本地震工学会第17回年次大会梗概集,TS_20220105,2022.
- 6) 久保田淳,高橋元美,鈴木芳隆,澤本佳和,聲高裕治,伊山潤,長江拓也:鉄骨造 18 層骨組を対象とした振動台 実験における長周期地震動による骨組崩壊挙動,日本建築学会構造系論文集,第83巻,第746号,pp.625-635, 2018.4.

[備考]

本稿は、第16回日本地震工学シンポジウムにて発表済みの内容を編集したものである。